Composite Materials

Composite Materials

Mechanics, Manufacturing and Modeling

Taylor & Francis Ltd

03/2021

536

Dura

Inglês

9780367687557

15 a 20 dias

Descrição não disponível.
Chapter 1: Introduction 1.1 What is a composite? 1.2 Why composites? 1.3 History of composites 1.4 Classification of composites 1.4.1 Fiber reinforced composites 1.4.2 Laminated composites 1.4.3 Particulate composites 1.4.4 Combination of composites 1.5 Nanomaterials 1.6 Applications of composite materials 1.6.1 Aerospace applications 1.6.2 Missile applications 1.6.3 Launch vehicle applications 1.6.4 Railways 1.6.5 Sports Equipments 1.6.6 Automotives 1.6.7 Infrastructure 1.6.8 Medical applications 1.6.9 Renewables Chapter 2: Materials 2.1 Fibers 2.2 Types of fibers 2.3 Natural fibers 2.3.1 Silk fiber 2.3.2 Wool fiber 2.3.3 Spider silk 2.3.4 Sinew fiber 2.3.5 Camel hair 2.3.6 Cotton fiber 2.3.7 Jute fiber 2.3.8 Kenaf fiber 2.3.9 Hemp fiber 2.3.10 Flax fiber 2.3.11 Ramie fiber 2.3.12 Sisal fiber 2.3.13 Bamboo fiber 2.3.14 Maize (Corn) fiber 2.3.15 Coir fiber 2.3.16 Banana fiber 2.3.17 Kapok fiber 2.3.18 Abaca fiber 2.3.19 Raffia palm fiber 2.3.20 Sugarcane fiber 2.3.21 Asbestos fiber 2.3.22 Glass wool 2.3.23 Rock wool 2.3.24 Ceramic wool 2.4 Advanced fibers 2.4.1 Boron fiber 2.4.2 Carbon fiber 2.4.2.1 Fabrication of C fiber using PAN 2.4.2.2 Fabrication of C fiber using pitch 2.4.3 Glass fiber 2.4.4 Aramid (Kevlar) fiber 2.5 Woven Fabric 2.6 Matrices 2.6.1 Polymer matrix composite 2.6.2 Metal matrix composites 2.6.3 Ceramic matrix composites 2.6.4 Carbon-Carbon composites 2.7 Fiber surface treatment 2.7.1 Graphite fiber treatment 2.7.2 Glass fiber treatment 2.7.3 Polymer fiber treatment 2.8 Fiber content, density and void content 2.9 Load transfer mechanism Chapter 3: Manufacturing Techniques 3.1 Polymer matrix composites 3.1.1 Thermoset matrix composites 3.1.2 Thermoplastic matrix composites 3.2 Metal-matrix composites 3.2.1 Liquid-state processes 3.2.2 Solid-state processes 3.2.3 In-situ processes 3.3 Ceramic matrix composites 3.3.1 Cold pressing and sintering 3.3.2 Hot pressing 3.3.3 Reaction bonding 3.3.4 Infiltration 3.3.5 Polymer infiltration and pyrolysis 3.4 Miscellaneous techniques 3.4.1 Resin film infusion 3.4.2 Elastic reservoir molding 3.4.3 Tube rolling 3.4.4 Compocasting 3.4.5 Spark plasma sintering 3.4.6 Vortex addition technique 3.4.7 Pressureless infiltration process 3.4.8 Ultrasonic infiltration 3.4.9 Chemical vapor deposition 3.4.10 Physical vapor deposition 3.5 Basics of curing 3.5.1 Degree of curing 3.5.2 Curing cycle 3.5.3 Viscosity 3.5.4 Resin flow 3.5.5 Consolidation 3.5.6 Gel-time test 3.5.7 Shrinkage 3.5.8 Voids Chapter 4: Mechanics of Composites 4.1 Lamina 4.2 Laminates 4.3 Tensors 4.4 Deformation 4.5 Strain 4.6 Stress 4.7 Equilibrium 4.8 Boundary conditions 4.8.1 Tractions 4.8.2 Free surface boundary conditions 4.9 Continuity conditions 4.9.1 Displacement continuity 4.9.2 Traction continuity 4.10 Compatibility 4.11 Constitutive equations 4.12 Plane stress 4.13 Plane strain 4.14 Generalized plane problems 4.15 Strain energy density 4.16 Minimum principles 4.16.1 Minimum potential energy 4.16.2 Minimum complementary energy 4.16.3 Bounds and uniqueness 4.17 Effective property concept 4.18 Generalized Hooke's law 4.19 Material symmetry 4.19.1 Monoclinic material 4.19.2 Orthotropic material 4.19.3 Transversely isotropic material 4.19.4 Isotropic material Chapter 5: Linear Elastic Stress-Strain Characteristics of Fiber Reinforced Composites 5.1 Stresses and deformation 5.2 Maxwell-Betti reciprocal theorem 5.3 Material properties relationship 5.4 Typical properties of materials 5.5 Interpretation of stress-strain relations 5.6 Free thermal strains 5.7 Effect of free thermal strains on stress-strain relations 5.8 Effect of free moisture strains on stress-strain relations Chapter 6: Micromechanics 6.1 Volume and mass fractions 6.1.1 Volume fractions 6.1.2 Mass fractions 6.2 Density 6.3 Void content 6.4 Evaluation of elastic moduli 6.4.1 Strength of materials approach 6.4.2 Semi-empirical models 6.4.3 Elasticity approach Chapter 7: Plane Stress Assumption 7.1 Stresses and strains under plane-stress condition 7.2 Numerical results 7.3 Effects of free thermal and free moisture strains Chapter 8: Global Coordinate System: Plane Stress Stress-Strain Relations 8.1 Transformation equations 8.2 Transformed reduced compliance 8.3 Transformed reduced stiffnesses 8.4 Engineering properties in global coordinates 8.5 Mutual influence coefficients 8.6 Free thermal and moisture strains 8.7 Effects of free thermal and moisture strains on plane stress stress-strain relations in global coordinate system Chapter 9: Classical Lamination Theory 9.1 Laminate nomenclature 9.2 The Kirchhoff hypothesis 9.3 Effects of the Kirchhoff hypothesis 9.4 Laminate strains 9.5 Laminate stresses 9.6 Stress distributions 9.6.1 [0/90]s laminate subjected to known x0 9.6.2 [0/90]s laminate subjected to known kx0 9.7 Force and moment resultants Chapter 10: The ABD Matrix 10.1 Force and moment resultants 10.2 The ABD matrix 10.3 Classification of laminates 10.3.1 Symmetric laminates 10.3.2 Balanced laminates 10.3.3 Symmetric balanced laminates 10.3.4 Cross-ply laminates 10.3.5 Symmetric cross-ply laminates Chapter 11: Failure Theories for Composite Materials 11.1 Theories of failure 11.2 Hill's theory of failure 11.3 Tsai-Hill theory of failure 11.4 Hoffman theory of failure 11.5 Maximum stress failure theory 11.6 Maximum strain theory 11.7 The Tsai-Wu failure criterion 11.8 Hashin theory Chapter 12: Mechanics of Short-Fiber Reinforced Composites 12.1 Notation 12.2 Average properties 12.3 Theoretical models 12.3.1 Cox shear lag model 12.3.2 Eshelby's equivalent inclusion 12.3.3 Dilute Eshelby's model 12.3.4 Mori-Tanaka model 12.3.5 Chow model 12.3.6 Modified Halpin-Tsai or Finegan model 12.3.7 Hashin-Shtrikman model 12.3.8 Lielens model 12.3.9 Self-consistent model 12.4 Fast fourier transform numerical homogenization methods 12.4.1 FFT based homogenization method 12.4.2 Implementation of FFT based homogenization method Chapter 13: Toughness of Composite Materials 13.1 Basics 13.2 Interfacial fracture 13.3 Work of fracture 13.3.1 Deformation of matrix 13.3.2 Fiber fracture 13.3.3 Interfacial de-bonding 13.3.4 Frictional sliding and fiber pull-out 13.3.5 Effect of microstructure 13.4 Sub-critical crack growth 13.4.1 Fatigue 13.4.2 Stress-corrosion cracking Chapter 14: Inter-laminar Stresses 14.1 Finite width coupon 14.2 Equilibrium considerations 14.3 Inter-laminar Fyz shear force 14.3.1 Uniform strain loading 14.3.2 Curvature loading 14.4 Inter-laminar Mz moment 14.4.1 Uniform strain loading 14.4.2 Curvature loading 14.5 Inter-laminar Fzx shear force 14.5.1 Uniform strain loading 14.5.2 Curvature loading Chapter 15: Laminated Plates 15.1 Governing equations 15.2 Governing equations (in displacement form) 15.3 Simplification of governing equations 15.3.1 Symmetric laminates 15.3.2 Symmetric balanced laminates 15.3.3 Symmetric cross-ply laminates Chapter 16: Viscoelastic & Dynamic Behavior of Composites 16.1 Viscoelastic behavior of composites 16.1.1 Boltzmann superposition integral 16.1.2 Spring-dashpot models 16.1.3 Quasi-elastic approach 16.1.4 Complex modulus 16.1.5 Elastic-viscoelastic correspondence principle 16.2 Dynamic behavior 16.2.1 Longitudinal wave propagation 16.2.2 Flexural vibration 16.2.3 Damping analysis Chapter 17: Mechanical Testing of Composites 17.1 Societies for testing standards 17.2 Objectives of mechanical testing 17.3 Effect of anisotropy 17.4 Nature and quality of data 17.5 Samples and specimen for testing 17.6 Miscellaneous issues with testing 17.7 Primary properties 17.7.1 Microscopy 17.7.2 Ultrasonic Inspection 17.7.3 X-ray inspection 17.7.4 Thermography 17.8 Physical properties 17.8.1 Density 17.8.2 Fiber volume fraction 17.8.3 Void content 17.8.4 Moisture content 17.9 Tensile and compressive testing 17.9.1 Rosette principle 17.9.2 Tensile test 17.9.3 Compression test 17.10 Shear testing 17.10.1 Two-rail shear test 17.10.2 Three-rail shear test
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.